Find roots of equations using Newton's iterative method
+ (addition), - (subtraction), * (multiplication), / (division)^ (power/exponentiation), e.g., x^2, 2^x2x = 2*x, x(2+3) = x*(2+3)sin(x) - sinecos(x) - cosinetan(x) - tangentarcsin(x) or asin(x) - arcsine (inverse sine), input must be in [-1, 1]arccos(x) or acos(x) - arccosine (inverse cosine), input must be in [-1, 1]arctan(x) or atan(x) - arctangent (inverse tangent)atan2(y, x) - arctangent of y/x (returns angle in correct quadrant)log(x) or ln(x) - natural logarithm (base e)log(b, x) - logarithm with base b, e.g., log(10, x) for log₁₀(x), log(2, x) for log₂(x)sqrt(x) - square rootabs(x) - absolute valueexp(x) - exponential (e^x)pi or PI - π (3.14159...)e - Euler's number (2.71828...)x^2 - 4 - Find square root of 4sin(x) - 0.5 - Find where sin(x) = 0.5log(10, x) - 2 - Find where log₁₀(x) = 2log(2, x^2) - 3 - Find where log₂(x²) = 3x^3 - 2*x + 2 - Cubic equationxn+1 = xn - f(xn) / f'(xn)